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Abstract—The emergence of socio-technical systems charac-
terized by significant user collaboration poses a new challenge
for system adaptation. People are no longer just the “users”
of a system but an integral part. Traditional self-adaptation
mechanisms, however, consider only the software system and
remain unaware of the ramifications arising from collaboration
interdependencies. By neglecting collective user behavior, an
adaptation mechanism is unfit to appropriately adapt to evolution
of user activities, consider side-effects on collaborations during
the adaptation process, or anticipate negative consequence upon
reconfiguration completion.

Inspired by existing architecture-centric system adaptation
approaches, we propose linking the runtime software architecture
to the human collaboration topology. We introduce a mapping
mechanism and corresponding framework that enables a system
adaptation manager to reason upon the effect of software-level
changes on human interactions and vice versa. We outline the
integration of the human architecture in the adaptation process
and demonstrate the benefit of our approach in a case study.

Index Terms—collaboration topology, software architecture,
runtime mapping, architecture reconfiguration, dynamic adap-
tation

I. Introduction

In 2006, Northrop et al. [1] identified Ultra-Large-Scale
(ULS) systems as the major future software engineering
challenge. ULS systems emerge in various domains such
as defense, financial trading, healthcare, and transport/energy
infrastructure control. Among the defining characteristics of
ULS systems are decentralized control, conflicting and chang-
ing requirements, continuous evolution, heterogeneous and
dynamic system elements, ubiquitous failures, and erosion of
the people/system boundary. This paper focuses primarily on
the implication of that last aspect on system (self-) adaptation.
People are no longer just the “users” of a system but an integral
part [1] p13. Consequently human interactions are highly
relevant to the design and adaptation of ULS systems ([1]
p31ff). We believe that this is true not only for ULS systems
but also for traditional medium and large-scale systems. Any
system heavily relying upon significant user collaboration
needs to explicitly address human interaction implications
during design-time and runtime.

Among the many adaptation approaches, architecture-driven

techniques appear to be the most applicable to systems ex-
hibiting ULS characteristics. Kramer and Magee [2] argue
that an architecture-based approach provides (i) concepts and
principles applicable across domains, (ii) sufficient abstraction
from the algorithmic and network level while still capturing
dynamic change, and (iii) scalability through hierarchical
composition, thereby facilitating the specification of systems
of systems. In addition, architecture-driven adaptation tech-
niques are among the earliest [3] and continuously relevant
approaches [4] as demonstrated by successful application to
mobile environments [5], robotics systems [6], and adaptive
service compositions [7].

Current architecture-driven adaptation mechanisms, how-
ever, consider only the software system and remain unaware of
the ramifications arising from collaboration interdependencies.
A system neglecting the collective user behavior might suffer
from some of the following example weaknesses:

• The system is unable to support the efficient operation
and evolution of user behavior. For example, failing
to provide appropriate coordination mechanisms when
groups of users change their behavior from sequential
resource access to simultaneous resource access.

• Conversely, the system cannot anticipate the conse-
quences of particular software adaptations. Disregarding,
for example, user proximity, user role, or user capacity
might result in reconfigurations that jeopardize a team’s
performance due to increasing the likelihood of informa-
tion overload, information delay, information scarcity, or
resource access conflicts.

• Likewise, the system is unable to reason about side-effects
during the software reconfiguration process. A database
schema update, for example, might have the implicit
assumption that humans are in a state of quiescence
upon commencing an update, potentially interrupting all
ongoing interactions.

• The system remains unaware of users becoming bot-
tlenecks. Unavailable or overloaded users slow down
critical processes when they are responsible for manually
triggering key tasks.



We propose linking the system’s software architecture to
human interactions. Specifically we describe the system’s users
in terms of human components and collaboration connectors
along with their means of communication and coordination.
To this end, we apply the human Architecture Description
Language (hADL) introduced in our previous work [8] for
specifying a system’s underlying collaboration topology, and
the eXtensible Architecture Description Language (xADL [9])
for specifying the software architecture. Explicit non-trivial
design-time mappings between hADL and xADL elements
allow, during runtime, the matching of software component
(and connector) instances to users and their interactions.
Adaptation rules can subsequently utilize the hADL model,
for example, for prioritizing the replication of components
associated with key collaborators.

The main contributions of this paper are
• a model for mapping from software architecture to human

collaboration patterns and vice versa
• a framework for detecting runtime software architecture

changes and reflecting those changes in the human collab-
oration topology according to the predefined mappings.

• a discussion on integrating human architecture and soft-
ware architecture for system adaptation.

• a case study demonstrating the benefit of turning soft-
ware architecture-centric self-adaptation strategies to be
collaboration-aware.

The remainder of this paper is structured as follows. Sec-
tion II and III provide a motivation scenario and a discussion of
related work, respectively. Section IV summarizes background
information, an overview of our approach, and the architecture
mapping rationale. Section V details the design-time mapping
specification and the runtime mapping process. We discuss the
application of our framework for collaboration-aware system
self-adaptation in Section VI. A case study in Section VII
demonstrates actual adaptation benefits. Finally, Section VIII
gives an outlook on future work and concludes this paper.

II. Motivating Scenario

Monitoring and safety systems range in scope from a
small security team handling an office building to thousands
of personnel in back offices and on site at geographically
distributed locations to secure critical infrastructure. These
systems tightly interweave people and software components
and hence need co-adaptation of collaboration structures and
software architectures. In the building monitoring case, back
office operators utilize high definition video streams, floor
plans, building sensor feeds, occupancy logs, and communica-
tion channels with on-site security staff. Reassigning observa-
tion tasks among team members, reacting to non-responding
team members, or adding new team members are examples of
collaboration-driven adaptations that result in changes to the
underlying software structure.

The adaptation mechanism needs to react to software-level
events such as failing components, congested data links, and
emergence of new information sources. At the same time it

requires maintenance of various QoS metrics such as accept-
able video delay, video stream availability, and bandwidth cost
through continuous adaptation of video relay replication and
video stream rerouting.

In the presence of scarce resources, the adaptation mech-
anism has to prioritize the adaptation of particular relays
and video streams. To this end, it requires awareness of the
collaboration topology and user roles. Consider the software
architecture in Figure 1 consisting of components for Stream-
ingServers, VideoSources, GUIs for each role, and connectors
for coordinating video publishing, subscribing, and deliver-
ing activities. This architecture may serve as the underlying
communication infrastructure for two, quite distinct collabo-
ration topologies (Fig. 2 and Fig. 3). The publish/subscribe
human architecture in Figure 2 specifies the following human
components: FieldAgents provide video streams (PubStreams),
whereas Backoffice Agents, Assistants, and Team leaders sub-
scribe to video streams (SubStreams). VideoPubSub collabo-
ration connectors—typically but not necessarily implemented
as software entities—manage video stream publication and
subscription. Video feeds may be replicated across multiple
VideoPubSub connectors in accordance with the software
architecture. All users have access to a WallScreen (a collab-
oration object of type Shared Artifact) for displaying relevant
video streams. The collaboration topology in Figure 3 lacks
such a flat organizational hierarchy and instead features a
pipes/filters-style collaboration structure. Individual agents re-
ceive their video feeds as deemed relevant by their predecessor.
A Backoffice Agent, for example, routes a PipeStream to an
Assistant. Ultimately only the Team leader has access to the
WallScreen.

Suppose an adaptation mechanism reconfigures the soft-
ware architecture to maintain system reliability by avoiding
individual StreamingServers from becoming overloaded. Si-
multaneously, it should ensure that the team leader has (the
most) reliable streams. Without a mapping between software
and collaboration structure, it would be unable to make an
informed decision between adaptation action “replicate team
leader video streams” (suitable for the human architecture in
Fig. 2) or action “equal component replication along the video
relay chain” (suitable for the human architecture in Fig. 3).
We will be using these configurations throughout the paper for
explaining the mapping process at runtime and design-time,
the adaptation process, and the final evaluation.

III. RelatedWork

Our work builds on the insights of architecture-based adap-
tation research. As early as 1999, Orzeiy et al. [3] outlined
the process for reflecting runtime changes in an architec-
tural model as the basis for dynamic adaptation. Subsequent
work focused predominately on architecture-based adaptation
techniques such as the Rainbow framework [10], the K-
Component Architecture Meta-model [11], Model-based de-
velopment [12], or Object-oriented design adaptation [13]. In
line with such previous work, our framework also features



Fig. 1. Software Architecture: Surveillance Video Monitoring.

Fig. 2. Collaboration Architecture: Publish/Subscribe-style Surveillance Team. Information flows from left to right along collaboration links. Each link
connects two collaboration actions (3-letter abbreviated: send, f orward, receive, display).

Fig. 3. Collaboration Architecture: Pipes/Filters-style Surveillance Team. Information flows from left to right along collaboration links. Each link connects
two collaboration actions (3-letter abbreviated: send, f orward, receive, display).

an architecture runtime manager and the adaptation mecha-
nism follows the feedback loop described by the autonomic
computing MAPE-K model: Monitoring, Analysis, Planning,
Execution, and Knowledge.

As we pointed out in the introduction, these techniques
focus exclusively on adapting the software architecture. User
preferences and user context drive adaptation in mobile scenar-
ios (e.g., the MADAM architecture model [5]) but the applied
techniques still remain unaware of collaboration dependencies.
The novel aspect of our research is mapping the human
architecture (hADL) to the software architecture (xADL) at
designtime and runtime. As we will demonstrate in Section VI,
having two distinct, but constantly synchronized views on the
system gives rise to unique adaptation opportunities.

Note that linking of the xADL and hADL architecture
models should not be mistaken for the three-layer architecture
model [14], typically applied for self-adaptation in the robotics
domain [6]. The three-layer model describes a strict hierarchi-
cal separation of goal management, change management, and
change execution. In contrast, we propose to apply software
architecture and human architecture simultaneously across all
steps of the MAPE-K model.

Enhancing software architecture models with domain spe-
cific properties enables analysis beyond structural consistency.
Edwards and Medvidovic [15] apply multi-model composition
in their XTEAM framework to simulate reliability, power
consumption, and performance. Di Ruscio et al. [16] utilize
model mapping and transformation techniques for integrat-



ing multiple architecture concerns (e.g., fault tolerance and
activity flow). The SASSY framework [17] provides service
activity schemas and service sequence scenarios to specify
QoS requirements in service-oriented architectures. Finally,
Bhave et al. [18] augment software architectures with phys-
ical properties and behavioral annotations, thus enabling an
integrated specification of cyber-physical systems such as
quadrotors. The main difference compared to our approach
is the extremely tight coupling of the various architectural
views such that no separate mapping and tracing is foreseen
or required during runtime.

The business process modeling domain traditionally in-
cluded some aspects of human involvement. Business Process
Model and Notation BPMN [19] consists of constructs for
describing activities in business processes, their dependencies,
artifacts, and involved events. BPMN processes typically map
to BPEL, the Business Process Execution Language, for
execution. The BPEL4People [20] extension utilizes human
tasks for integrating users into otherwise Web-service based
workflows. Human tasks support assignment to generic roles,
ownership delegation, and coordination mechanisms such as
four eyes, nomination, or escalation. Both languages primarily
target service-oriented architectures with limited or no support
for other common architectural styles such as Peer-to-Peer,
Components and Connectors (C2), or Publish-Subscribe. Like-
wise, support for collaboration is limited to isolated execution
of individual task items from a work list. Dynamic patterns for
joint work on shared artifacts, publish-subscribe information
distribution, organizational control, or request routing in social
networks [21] remain outside the scope of BPMN and BPEL.
The Human-provided Service framework (HpS) [22] offers
more flexible user collaboration but lacks support for structural
patterns at the human level and the software level.

As a final note for clarification and caution: we cannot
rely on insights from Conway’s Law [23] or socio/technical
congruence [24] when describing the mapping between col-
laboration structure and software architecture. We model the
structure of the users’ organization rather than the developers’
organization.

IV. Approach
A. Background

We first proposed linking software architecture and human
collaboration models in our 2012 ICSE New Ideas and Emerg-
ing Results track paper [25]. It describes the general idea
and approach to achieve co-adaptation and introduces basic
concepts. In this paper we focus in detail on the models
and mechanism for reflecting runtime software architecture
changes in collaboration topologies and how to apply these
synchronized views for sophisticated system adaptation.

The co-adaptation of software architecture and human col-
laboration requires models for specifying the involved runtime
elements and their relations. Components and connectors
are the primary building blocks of a software architecture.
Components are the loci of computation and data manage-
ment whereas connectors facilitate and control the interactions

between components. Based upon Malone and Crowston’s
observation that human collaboration and software systems
share similar coordination requirements [26], we argue for
a similar distinction among humans according to work-
focused and coordination-focused roles. Along these lines
we recently introduced the human Architecture Description
Language (hADL) for describing collaboration topologies in
terms of human components and collaboration connectors [8]
(see Fig. 2 and Fig. 3 for examples). Software architecture and
human architecture models are thus the core artifacts of our
approach.

MAPE StepsAdaptation 

Knowledge

Runtime 

Mapping

Runtime 

System

Software 

Architecture

Mapping 

Templates

Collaboration 

Topology

Human 

Architecture

Domain-specific 

Probes/Sensors

ref

ref

Software 

Artifacts

ref

ref

+

Monitoring

Analysis

Planning

Execution

Design-time Runtime

[hADL][hADL]

[xADL]

Runtime SW 

Architecture
[xADL]

Fig. 4. Reflecting software architecture changes in the human architecture
for collaboration-aware system adaptation.

B. Mapping and Adaptation Overview

Given the software architecture and human architecture
description, a software architect specifies at design-time how
software elements map to collaboration elements and vice-
versa. Software architecture-centric events are the primary
source for creating a runtime view of the overall system. Our
approach aims to leverage these events as much as possible for
inferring the collaboration topology (Fig. 4 middle). The map-
ping specification identifies configurations where software-
centric events are insufficient. An event, for example, may
describe a new link between an AgentGUI component and a
StreamingServer component hosting multiple video streams.
While such an event provides sufficient information at the
software architecture level, additional information is required
to unambiguously connect the respective human agent to a
particular SubStream. We thus embed not only software archi-
tecture but also human architecture and mapping specification
in the software artifacts (Fig. 4 left).

System adaptation typically requires additional domain-
specific events besides architecture-centric changes. While
independent from the software architecture and collaboration
topology, such information describes runtime software and col-
laboration elements in further detail. Eventually, an adaptation



manager utilizes the runtime software architecture, runtime
mapping, and collaboration topology in each adaptation step
(monitoring, analysis, planning, and execution) to detect and
react to critical situations (Fig. 4 right).

C. The Case for an explicit Architecture Mapping

Multiple generic, extensible, and domain-specific
architecture description languages already exist (e.g.,
ACME [27], xADL [9]) and one could argue that collaboration
structures should be embedded at the software architecture
level. There are multiple reasons, however, why a separate
human architecture model, and thus an explicit, non-trivial
mapping, is a better choice:
• Collaboration patterns are sufficiently independent from
their implementing software architecture style, and even
more so from the detailed software topology. For example,
a collaboration system for a rescue task force can be
realized as a peer-to-peer system for environments without a
communication infrastructure. Alternatively, the client/server
style is suitable when a reliable communication infrastructure
is available. A collaboration pattern based on supervisors
assigning tasks to workers and subsequently collecting their
feedback, however, remains in both cases the same. Similarly,
the same software architecture style supports different
collaboration patterns as demonstrated in the motivating
scenario in Section II.
• Software architectures are typically more fine-grained than
collaboration structures. Spreading collaboration structure
descriptions as annotations across software elements makes
it hard to obtain a clear picture of the overall human
architecture.
• Structural changes at the collaboration level rarely
correspond to structurally equivalent changes at the software
level and vice versa. Hence, collaboration changes would
remain unnoticed in the software structure, while software
topology changes would require additional analysis whether
the human architecture remained the same.
• Adaptation relevant properties potentially fit more naturally
with hADL elements and thus allow for devising more
understandable and manageable adaptation triggers, analysis
logic, and adaptation strategies.
• An explicit human architecture keeps the focus on the
user and team perspective and thus gives stake-holders an
additional model for communicating requirements during the
design process. This also enforces a structured approach to
explicitly defining adaptation and evolution capabilities at the
collaboration level.

V. The ArchitectureMapping Process

A. Design-time Mapping Specification

Synchronizing software architecture and collaboration
topology at runtime requires the software architect to specify a
mapping of software elements to collaboration elements. Our
framework utilizes the eXtensible Architecture Description
Language (xADL [9]) for describing software component

types, connector types, interface types, and containment hi-
erarchies. On the collaboration level, we apply the human
Architecture Description Language (hADL [8]) for specify-
ing human component types, collaboration connector types,
collaboration object types, collaboration action types, and
substructure patterns.

Large-scale systems are typically too dynamic and complex
for completely specifying all involved elements and their
precise wiring at design-time. Thus, we can neither a-priori
fully describe the runtime software structure in xADL nor
the collaboration topology in hADL. Instead we assemble
the various types defined in xADL and hADL into templates
that outline how to connect the individual components and
connectors at runtime. For example, Figure 5 displays on
the left a software system template for connecting video
sources, connectors, streaming server, and video sinks, and a
publish/subscribe (human) collaboration pattern on the right.
A software-to-collaboration mapping specification consists of
four main parts:
• a set of xADL elements (e.g., a StreamingServer component,
PublishVideo connector, SubscribeVideo connector, and links
from both connectors to the component). The specification
refers to the template elements and not the actual element
type definition. A type potentially occurs multiple times in
a template such as the ReceiveVideoAgent connector and
ReceiveVideoWallScreen connector which both derived from
the ReceiveVideo connector type.
• a set of hADL elements (e.g., VideoPubSub collaboration
connector, SubStream collaboration object, and the link be-
tween). Each xADL and hADL specification pair can be
interpreted as corresponding pieces in two different jigsaw
puzzles (see the two pieces for mapping template 2 in Fig. 6
left).
• the MappingType determines how instances of the xADL ele-
ments map to instances of the hADL elements. The following
mapping types exist: exact 1-to-1 such as the VideoSource
to FieldAgent+PubStream (see mapping x1h2 in Fig. 5),
aggregating 1-to-M such as the StreamingServer+Connectors
hosting multiple VideoPubSub collaboration connectors +
SubStreams (see mapping x3h3 in Fig. 5), replicating N-to-
1 for providing the same video stream on many servers, or a
combination thereof (N-to-M).
• a set of interlock point pairs define the intersection of
two mappings in the software architecture, and where to
locate the corresponding interlink at the human architecture
level. Applying the jigsaw analogy: an interlock point pair
identifies where two puzzle pieces (i.e., mappings) of the
same puzzle (i.e., architecture) match. It thereby correlates
the corresponding locations in each puzzle (see Fig. 6 left).
A single interlock point pair identifies exactly one xADL
interface and exactly one hADL collaboration action. The
xADL interface establishes joint points of two xADL puzzle
pieces, the hADL action specifies the joint points between two
hADL puzzle pieces. Consider the mapping template x1h1 in
Fig. 5: the VideoSource’s sendPubStream interface pairs up
with the PubStream’s forward action.



Fig. 5. Example mappings between video streaming server architecture (xADL) and publish/subscribe collaboration pattern (hADL). Mapping 1, for example,
consists of xADL element set x1 and hADL element set h1. Mappings for Assistant and Teamleader and corresponding xADL elements are omitted for sake
of clarity.

Note that the mapping specification includes only elements
that are needed to maintain an unambiguous mapping to col-
laboration elements. Thus, a software architect typically omits
software elements irrelevant to the collaboration topology and
vice versa (e.g., the link between the AgentGUI component
and the SubscribeVideo connector). For the example in Fig-
ure 5, a total of 13 mapping definitions link the software
architecture and the collaboration structure (including the six
mappings for Assistant and Teamleader not shown).

Our framework leverages software architecture-centric
events as much as possible. However, we determine additional
disambiguation events already at design-time when we derive
from the mapping specification that software-level events
won’t allow for conclusive mapping execution at runtime.
Mapping 4 in Figure. 6 needs to link its hADL piece to
mapping 1a or 1b. An disambiguation event identifies a xADL
element involved in the completed hADL piece 4x and one
hADL element from the targeted, existing hADL piece 1a.
At runtime, the link between a VideoSource component and
a PublishVideo connector, for example, maps 1-to-M to the
PubStream-to-VideoPubSub link (mapping x5h5 in Fig. 5).
Here we need a disambiguation event to define which VideoP-
ubSub (among the many hosted by the StreamingServer) the
hADL link should attach to. Identifying required disambigua-
tion events at design-time is straightforward: every interlock
point pair involved in a 1-to-M or N-to-M mapping determines
the required information expected from the corresponding
disambiguation event.

Before system deployment, type information from xADL
and hADL models and disambiguation event requirements
become embedded in the software artifacts. The exact means
(e.g., through source code annotations, middleware configura-
tion, or sensor configuration) remains outside the scope of this
paper (see, for example, [28], [3], [6]).

Fig. 6. Utilizing interlock point pair definitions and disambiguation data to
correctly join hADL and xADL mappings.

B. Runtime Template Matching and Execution

At runtime, the Software Architecture Manager receives sys-
tem events describing the type and identity of newly deployed
software elements, their wiring, respectively their termination,
and translates them into software architecture change events
(i.e., new/deleted component/connector/link) (Fig. 7 1).

For removal of existing elements, the Mapping Template
Matcher takes these architecture change events and merely
retrieves the respective mapping instance (Fig. 7 2a). For new
elements, however, it determines a set of candidate mappings
(Fig. 7 2b). Each xADL element type is potentially part of
multiple mapping definitions (e.g., the link between Stream-
ingServer and ReceiveVideo connectors is of the same type for
AgentGUI, AssistantGUI, TeamLeaderGUI, and WallScreen),
but ultimately only part of a single mapping instance. The
Mapping Template Matcher keeps adding architecture change
events to mapping candidates until at least one candidate
contains all required xADL elements (Fig. 7 3a). All re-
maining candidates are discarded. Matching of interlock point
pairs with existing neighboring mappings selects the correct



Fig. 7. Artifacts and Steps involved in the Mapping Template Matching process.

mapping in case of multiple simultaneously fulfilled mapping
candidates (Fig. 7 3b).

For each completed mapping specification and sufficient
disambiguation data, the Mapping Template Matcher dis-
patches collaboration change events for each mapped hADL
element (Fig. 7 4a). When adding new elements, a runtime
mapping instance stores references to all involved xADL
and hADL instances. 1-to-M mappings typically accumulate
multiple hADL reference sets, respectively N-to-1 multiple
xADL reference sets, and N-to-M multiples of both. The
Mapping Template Matcher also records interlock point pair
instances to track neighboring mapping instances (Fig. 7 4b).
Ultimately, the Human Architecture Manager processes the
collaboration change events to maintain a consistent view of
the collaboration topology.

VI. Utilizing hADL for System Self-Adaptation

Correlating software architecture and human architecture
offers immense opportunities for sophisticated system sensing,
monitoring, analysis, and adaptation (Fig. 8). A system archi-
tect utilizes insight into the underlying collaboration pattern
at design-time for selecting the appropriate adaptation events,
metrics, triggers, and strategies. Later at runtime, the human
architecture serves as the data source for exactly those events,
metrics, and triggers. Human to software mapping instances
subsequently identify the exact software elements requiring
reconfiguration.

In this section, we discuss for our the scenario the exemplary
application of the runtime human architecture model and its
mapping to software architecture elements for system self-
adaptation. In line with the motivating scenario, we focus on
two exemplary non-functional system requirements and the
respective high-level adaptation approach:
1) Quality: video streams should be available in high resolu-
tion: ⇒ limiting the maximum bandwidth usage per Stream-
ingServer component and host.
2) Resilience: system failures should have limited impact on
the team’s monitoring ability (especially the team leader):
⇒ replicating StreamingServer components and strategically
routing streams to avoid single points of failure.

Fig. 8. Collaboration-aware system adaptation process.

Such adaptation goals require introducing domain-specific
data sources. We include xADL hosts that group collocated
components and connectors. They also keep track of available
bandwidth capacity and consumption. Capturing and process-
ing such additional data remains completely independent of
the xADL-to-hADL mapping process.

Sensing
Both architecture views may become carriers of sensor data
such as bandwidth constraints. To this end, we extended xADL
and hADL with capabilities to store arbitrary system proper-
ties. We thus gain the ability to associate sensor data with
a particular xADL element, hADL element, or combination
thereof.

Video stream bandwidth is an excellent example for a
collaboration level property that is relevant for software
level adaptation. The software architecture by itself offers no
straightforward means for specifying which components, con-
nectors, and links carry a particular video stream. Capturing
bandwidth for individual StreamingServer components pro-
vides little assistance in determining how to rewire publishers
and subscribers to remain within given bandwidth thresholds.



Tracking bandwidth usage for individual hADL PubStreams or
Substreams, on the other hand, provides promptly the number
of consumers, the role of consumers, and via runtime mapping
instance data, also the software elements’ bandwidth usage.

Tracking a host’s bandwidth capacity and utilization
complements human architecture-centric bandwidth changes.
Hence, changes in (i) video stream bandwidth usage, (ii) a
stream’s subscription base, and (iii) available host bandwidth
may serve as triggers for system adaptation.

Monitoring
Software system monitoring oversees structural and property
changes in the software architecture and human architecture.
Monitoring can thus enable reassessment of a component’s
bandwidth usage upon the stream’s bandwidth fluctuations as
well as changes in the stream’s subscriber base.

A system architect applies the mapping specification when
creating the monitoring logic to reason how to accurately
derive a component’s properties. In the case of the Stream-
ingServer’s bandwidth usage, the architect aggregates the
bandwidth properties of all associated PubStreams and Sub-
Streams multiplied by their subscriber base. Ultimately, mon-
itoring output consists of high-level events and facts such as
component bandwidth usage.

Analysis
Software system analysis determines the impact of high-level
events such as components exceeding a given bandwidth
threshold. Similar to monitoring, system analysis accesses
hADL and xADL structures for determining high-level system
metrics used later in the planning phase for deciding what
adaptation strategies are most suitable. The analysis step
ultimately decides whether adaptation is necessary or not.

When a component exceeds its granted bandwidth quota,
system analysis collects system properties such as the remain-
ing bandwidth across all hosts. Sophisticated algorithms may
additionally consider whether the affected component serves
streams mainly to the Team leader in a publish/subscribe
collaboration structure, or whether the component primarily
serves streams at the same hop distance from the source in
the pipes/filter case.

For our scenario, system analysis will trigger an adaptation
request for a StreamingServer component, supplying infor-
mation on hosts with sufficient bandwidth capacity, and —
depending on the underlying collaboration pattern — deter-
mine the component’s teamleader-subscription ratio or same-
distance ratio, respectively.

Planning
The goal of keeping a component’s or host’s bandwidth usage
below a particular threshold applies to the software level and is
therefore independent of the underlying collaboration pattern.
To this end, the system supports the following fine-grained
adaptation actions plans:

1) Replicate the stream at another component and move a
(subset of) subscription(s).

2) Move a stream including all subscriptions to another
component.

3) Move a subscription to another component already serv-
ing the particular stream.

4) Drop a subscription.

The former two plans require a host with sufficient remaining
bandwidth (hostsOK), whereas the latter two plans apply when
the available bandwidth across all available hosts is exhausted
(hostsNOTOK).

Given the system analysis’ output, planning determines the
best adaptation strategy. The particular underlying collabora-
tion pattern constrains how to best perform system reconfig-
uration while achieving resilience. The runtime collaboration
topology determines the applicable set of hosts, components,
streams, and subscriptions as input to the adaptation strategies.
Separating and distributing dedicated StreamingServer compo-
nents for the team leader from components for regular users
is one option for achieving resilience for a publish/subscribe-
style collaboration pattern. In contrast, for a pipes/filters-style
collaboration topology, we aim for proportional bandwidth
allocation for each pipe (i.e., the StreamingServer component),
and distribute streams at the same distance (from the video
source) across multiple hosts. A single failing StreamingServer
component is thus unable to disrupt the overall monitoring
chain. Due to page constraints we limit our discussion of
suitable adaptation strategies to the publish/subscribe pattern.

1) When hostsOK and the StreamingServer component
is team leader-centric, we then try to move as many
non-leader subscriptions to other non-leader components
serving the particular stream. If this is insufficient to
reduce the bandwidth usage, select a team leader centric-
stream and relocate it to a newly deployed Stream-
ingServer at an available host.

2) For hostsOK and non-leader centric components, we
execute the previous strategy in reverse order, starting
with the relocation of team leader-centric subscriptions.

3) For hostsNOTOK and team leader-centric components,
we move team leader subscription to non-leader compo-
nents.

4) Finally, for hostsNOTOK and non-leader components,
we rank streams by their number of subscriptions, and
recommend subscribers of the most popular streams (i.e.,
the actual users) to drop their subscription.

The last strategy highlights the potential use of collaboration
topologies to include the relevant users in the adaptation of
the system when automatic reconfigurations no longer suffice.
Again the user selection is collaboration pattern specific:
users pull video stream according to a set of properties such
as location, quality, or relevance in the publish/subscribe
pattern. Hence, recommendations target primarily the stream
subscribers to reduce their selection. On the other hand,
the pipes/filter pattern has users push video streams to the
next consumer. Here recommendations address the stream
publishers to be more selective what to forward.

Execution
Enforcing adaptation plans is domain and infrastructure de-
pendent. Research in the domain of autonomic computing and



adaptive systems has focused on the execution of software
changes for more than a decade (e.g., [6] for architecture-based
reconfiguration). On the other hand, autonomous mechanisms
and techniques for achieving desired reconfigurations on the
collaboration level are limited to a few niche domains (e.g.,
automatic task management in Amazon Mechanical Turk).
It will require extensive research for evaluating reliability,
timeliness, quality, user acceptance, and associated privacy
concerns of such adaptation plans. We thus believe that the
aspect of actively adapting the human collaboration structure
(through autonomic actions, recommendations, or combina-
tions thereof) cannot be sufficiently addressed in the scope
of this paper. Nevertheless, we provide a case study in the
next section demonstrating the effectiveness approach limited
to software system adaptation.

VII. Case Study

In this section we evaluate the added benefit of integrating
detailed human architecture knowledge in the adaptation pro-
cess for a particular scenario. Specifically we are interested in
the achievable improvement of system reliability when apply-
ing adaptation strategies tailored to the underlying collabora-
tion topology compared to collaboration-unaware adaptation.
In the following, we focus on the publish-subscribe style
collaboration topology1 of the motivating example detailed in
Figure 2.

The scenario setup consists of 20 high definition video
streams at 20 Mbit/s that are initially evenly connected
across StreamingServer components; three components per
host, three hosts in total (see Fig. 9 for an schematic overview
of the software architecture). A StreamingServer component
reaches its bandwidth threshold at 150 Mbit/s, a host is limited
to 400 Mbit/s.

Vid1

SSvr SSvr SSvr SSvr SSvr SSvr

Vid2 Vid3 Vid18 Vid19

... ... ...

... Vid20

Agent Agent Agent Agent AgentAgent

3 Hosts, each  

400Mbit/s max

20 Video 

sources, each 

stream 20Mbit /s

4 subscriptions 

each client , 

total 80Mbit/s
Leader

each  Streaming 

Component

150 Mbit/s max

Fig. 9. Schematic case study configuration (omitting connectors, interfaces,
and most links). Dotted lines depict streams to the team leader.

Starting with no subscribers, we gradually increase the
number of connected agents (on separate hosts) interspersed
with team leader subscriptions. Each of the six regular agent
randomly connects to two streams on two components each.
The leader connects to a single stream on four randomly
selected components. We assume that sufficient network band-
width is available.

1Note that we do not attempt to compare the impact of different collab-
oration topologies on suitable adaptation actions and ultimately on system
reliability.

The adaptation manager observes the component load while
the number of subscriptions increases. The collaboration-
aware adaptation strategy focuses on moving leader subscrip-
tions to reduce component load as outlined in the previous
section. The baseline collaboration-unaware strategy selects
subscriptions randomly.

We measure a strategy’s impact by determining the average
reliability of leader associated streams (dotted lines in Fig. 9).
The individual stream reliability rel(s) is determined by the
number of stream replicas and the component failure proba-
bility of the respective StreamingServer p f ail(comp).

rel(s) = 1 −
n∏
i

p f ail(comp(si)) where n = replica(s) (1)

For sake of simplicity we assume a StreamingServer’s failure
rate to be 0.05 for no subscriptions, linearly increasing to
0.10 when reaching the bandwidth threshold. Additionally, we
assume sufficient bandwidth reserve to enable the leader to
seamlessly switch among replicated streams upon a component
failure.

Figure 10 compares the achieved average stream reliability
for both adaptation strategies as bandwidth usage increases.
The chart displays the reliability before and after adaptation
for each of the 12 performed reconfigurations (averaging data
from multiple experiment runs). The initial spike results from
the replication of the first leader subscription. Both adaptation
strategies cannot avoid degradation of reliability as the band-
width load on components and hosts increases. Collaboration-
aware adaptation, however, achieves consistently higher re-
liability through prioritizing leader subscriptions, averaging
0.972 compared to unaware adaptation at 0.952.

Fig. 10. Average Stream reliability for collaboration-(un)aware adaptation
for increasing bandwidth usage.

The adaptation strategies in this case study have been
kept simple on purpose, rewiring only the minimum number
of subscriptions to bring the bandwidth usage below the
threshold. As the results demonstrate, consideration of the



human architecture provides significant improvements already
for such a simple adaptation approach. We expect algorithms
performing even better when taking advantage of the full
extent of the collaboration topology.

VIII. Conclusions

We presented our approach for linking software architecture
and collaboration topology for enabling more sophisticated
system adaptation. System adaptation remains unaware of
collaboration interdependencies without such mapping infor-
mation. To this end, we provided a software architecture to
human architecture mapping specification at design-time and
a framework for reflecting software architecture events in the
human architecture at runtime. We further make the case
for integrating the collaboration topology at all stages of the
MAPE-K adaptation cycle. Our case study demonstrates the
benefit of our approach.

While our current work focused primarily on adapting the
software system, future research will address the challenge
of adapting also the human architecture. We will investigate
how autonomic adaptation actions and recommendations can
be combined for achieving desirable system configurations.
Simultaneously, we propose applying the MAPE-K process
on the human architecture for addressing undesirable human
collaboration situations. A collaboration-centric adaptation
mechanism may observe, for example, how many users access
the wall screen and recommend a suitable access coordination
mechanism.
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